Abstract

A variational principle is proposed to derive the governing equations for the problem of ocean wave interactions with a floating ice shelf, where the ice shelf is modelled by the full linear equations of elasticity and has an Archimedean draught. The variational principle is used to form a thin-plate approximation for the ice shelf, which includes water–ice coupling at the shelf front and extensional waves in the shelf, in contrast to the benchmark thin-plate approximation for ocean wave interactions with an ice shelf. The thin-plate approximation is combined with a single-mode approximation in the water, where the vertical motion is constrained to the eigenfunction that supports propagating waves. The new terms in the approximation are shown to have a major impact on predictions of ice shelf strains for wave periods in the swell regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.