Abstract
An AT-cut thickness-shear quartz crystal resonator (QXR) has been used as a force sensing and self-temperature-sensing (STS) element to develop a digital output force sensor. The QXR is fixed in a two-line mounting configuration in a cylindrical metal shell by double diaphragms, through which a diametric force proportional to the unknown force is applied to the QXR. The double diaphragms improve the reliability and the mechanical stability of the sensor significantly. In order to increase the measurement range and the sensitivity, the energy trapping-based QXR is cut to a symmetrical, incomplete circular shape to decrease stress concentration. Because operating the QXR in dual-mode excitation allows the separation of force change effects from temperature change effects, force measurement and STS are accomplished simultaneously with the same QXR. The structure and the configuration are optimized with theoretical analysis and FEM. The dual-mode STS and temperature compensation are described in detail, as well as a trimming method to reduce activity dips of AT-cut QXRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.