Abstract
Based on the application of the thermodynamic extremal principle, a new model for the diffusive and massive phase transformation in multicomponent substitutional alloys is developed. Interfacial reactions such as the rearrangement of the lattice, solute drag and trans-interface diffusion are automatically considered by assigning a finite thickness and a finite mobility to the interface region. As an application of the steady-state solution of the derived evolution equations, the kinetics of the massive γ → α transformation in the Fe-rich Fe–Cr–Ni system is simulated. The thermodynamic properties of the interface may influence significantly the contact conditions at the interface as well as the conditions for the occurrence of the massive transformation and its kinetics. The model is also used for the simulation of the diffusion-induced grain boundary migration in the same system. By application of the model a realistic value for the Gibbs energy per unit interface area is obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.