Abstract

AbstractThe previously developed multiscale method for concurrently coupling atomistic and continuum hydrodynamic representations of the same chemical substance is extended to consistently incorporate the Langevin‐type thermostat equations in the model. This allows not only to preserve the mass and momentum conservation laws based on the two‐phase flow analogy modeling framework but also to capture the correct local fluctuations and temperature in the pure atomistic region of the hybrid model. Numerical results for the test problem of equilibrium isothermal fluctuations of SPC/E water are presented. Advantages of using local thermostat equations adjusted for the multiresolution model for accurately capturing of the local water density in the atomistic part of the hybrid simulation domain are discussed. Comparisons with the reference pure all‐atom molecular dynamics simulations in GROMACS show that the suggested hybrid models are by a factor of 5–20 faster depending on the simulation domain size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.