Abstract

A new thermosensitive material, polydimethylsiloxane supramolecular aggregation (PDMS-SMA-1), was prepared by coupling the N-pyridin-2-yl-succinamic acid with aminopropyl-terminated polydimethylsiloxane via amidated reaction. Its structure was confirmed by FT-IR, 1H NMR and 13C NMR. And the FT-IR spectra, molecular dynamics simulations and density functional theory calculations supported the existence of intermolecular hydrogen bonding and π-π stacking in supramolecular aggregation and obtained its possible self-assembly structure. A combination of DSC measurements, oscillatory shear experiments, and AFM measurements was carried out to further investigate the nature of PDMS-SMA-1. The results indicated that hydrogen bonding and π-π stacking combined with phase segregation were important for the preparation of thermosensitive materials. Moreover, in order to investigate the effect of molecular weight on the thermal sensitivity and morphology of supramolecular aggregation, PDMS-SMA-2 with higher molecular weight was also synthesized. In contrast to PDMS-SMA-1, it had similar thermal properties but different morphology. All the characteristics of supramolecular aggregation suggested a much wider range of hydrogen bonding and π-π stacking motifs which could be applied in intelligent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.