Abstract

The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with β-Glycerophosphate (β-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of β-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/β-GP hydrogels, only allowing the release of 60–70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/β-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/β-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call