Abstract

ABSTRACTCarbon nanofiller reinforced polymeric materials offer the opportunity to obtain materials with desired properties. In the present study, effects of different loading of graphene oxide (GO) on the compatibility, thermomechanical, and morphological properties of incompatible polypropylene (PP)/polycarbonate (PC) polymer blends were investigated. The neat blend and blend nanocomposites were prepared by using a twin‐screw extruder under controlled shear pressure to explore the role of GO on thermomechanical properties of blends. Fourier transform infrared analysis showed the presence of GO in PC phase which was further confirmed by differential scanning calorimetry and morphological analysis. It was observed that up to loading of 0.5%, GO preferable dispersed in only PC phase and then dispersed in both PP and PC phase with further increase in GO loading due to increase in viscosity of PC phase. Field emission scanning electron microscopy investigation of PNCs showed the coalescence of PC phase with increase of GO loading. Tensile analysis confirmed that 1% of GO loading produced highest reinforcement in thermomechanical properties and further increase of GO loading deteriorate the mechanical properties. Dynamic mechanical analysis also showed high storage modulus for 1% loading. Thermal stability of 1% GO loaded nanocomposite was found to be higher than other blend nanocomposites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45062.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call