Abstract

SummaryJoints in geological materials introduce elastic compliance and weak planes on which sliding can occur. Although these materials can have multiple joint sets, they often have preferred orientations that cause both elastic and inelastic anisotropic response even when the unjointed material is isotropic. Azimuthal variations in radial velocity and polarity of tangential motion have been observed in experimental data for wave propagation caused by an initially spherical source in a geological material with multiple joint sets. This observed tangential ground motion was found to be related to mechanical anisotropy caused by preferred orientations of joints in the rock. This paper describes thermomechanical continuum constitutive equations, which model the effects of multiple persistent joint sets. A number of quasi‐static examples are considered, which show that the proposed model predicts anisotropic effects of sliding on multiple joint sets similar to those exhibited by computationally expensive mesoscale calculations, which model joint sets explicitly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call