Abstract
Occupational lung diseases such as coal worker’s pneumoconiosis, often called black lung, are caused by exposures to respirable coal mine dust. Dust composition is increasingly understood as an important disease factor, and it can vary significantly depending on dust source materials and generation processes. For regulatory compliance purposes, the mass concentration and quartz percentage of respirable dust are monitored in U.S. coal mines, but the whole composition is not typically determined. Previous work has indicated that thermogravimetric analysis (TGA) can be used to apportion the respirable dust mass to three important component fractions (i.e., coal, non-carbonate minerals, and carbonate), which should generally correlate with three different dust sources (i.e., coal strata, rock strata, and limestone rock dusting products being applied in the mine). However, a primary shortcoming of that previous work was use of fibrous sampling filters, which limited dust recovery and thus analytical accuracy. Here, an improved TGA application is presented using smooth polycarbonate filters. Based on experiments with laboratory-generated dust samples (masses ranging between 95–1,319 µg), the TGA-derived mass fractions (reported as percentage values) for all three components were found to generally be within ±10% of expected values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.