Abstract

Abstract This paper presents a theoretical study of the stresses in an infinite circular solid cylinder subjected to rapid surface heating and cooling. A quasistatic, uncoupled, thermoelastoplastic analysis based on the incremental theory of plasticity is formulated, and a numerical procedure is developed for a method of successive elastic solutions. The material of the cylinder is assumed to have temperature-dependent properties and to be characterized by the Romberg-Osgood stress-strain relation. The transient and residual stress distributions are discussed in detail, along with variations of the equivalent stress and plastic strain with time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.