Abstract

The aim of this paper is the design of a new one-step implicit and thermodynamically consistent Energy–Momentum (EM) preserving time integration scheme for the simulation of thermo-electro-elastic processes undergoing large deformations. The time integration scheme takes advantage of the notion of polyconvexity and of a new tensor cross product algebra. These two ingredients are shown to be crucial for the design of so-called discrete derivatives fundamental for the calculation of the second Piola–Kirchhoff stress tensor, the entropy and the electric field. In particular, the exploitation of polyconvexity and the tensor cross product, enable the derivation of comparatively simple formulas for the discrete derivatives. This is in sharp contrast to much more elaborate discrete derivatives which are one of the main downsides of classical EM time integration schemes. The newly proposed scheme inherits the advantages of EM schemes recently published in the context of thermo-elasticity and electro-mechanics, whilst extending to the more generic case of nonlinear thermo-electro-mechanics. Furthermore, the manuscript delves into suitable convexity/concavity restrictions that thermo-electro-mechanical strain energy functions must comply with in order to yield physically and mathematically admissible solutions. Finally, a series of numerical examples will be presented in order to demonstrate robustness and numerical stability properties of the new EM scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call