Abstract

The influence of wafer bonding and post-bond annealing conditions on the (cavity) void size and distribution was investigated theoretically and verified experimentally. Based on Cu–Cu thermo-compression bonding at 175 °C for 30 min and subsequent annealing at 200 °C for 1, 6 and 24 h, respectively, in both cases the total void surface reduces with the duration of the heat treatment, showing good correlation between theory and experiment. However, the experimental results revealed that the average void size increases while voids number decreases, which is a deviation from the prediction of the physical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.