Abstract

A study of the (difluoromethane + water) system was conducted at temperatures between (255 and 298) K, and pressures from (0.06 to 1.30) MPa. The solubility of difluoromethane in liquid water was measured from (280 to 298) K, at pressures up to the hydrate formation pressure. The ( p, T) behavior of the (liquid + hydrate + vapor) three-phase equilibrium was measured from (274 to 292) K. The ( p, T) behavior of the (ice + hydrate + vapor) three-phase equilibrium was measured from (257 to 273) K. Solubility-corrected enthalpies of dissociation were determined at the lower quadruple point ( Q1) using the Clapeyron equation. The de Forcrand method was used to determine the hydration number of the hydrate at Q1. The results show that not all of the cages in the SI hydrate structure are filled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.