Abstract

A thermodynamic model for predicting the phosphate capacity of CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags at the steelmaking endpoint during an 80-ton top–bottom combined blown converter steelmaking process has been developed based on the ion and molecule coexistence theory (IMCT). The phosphate capacity has a close relationship with the phosphate capacity index, whereas the logarithm of phosphate capacity is 12.724 greater than that of phosphate capacity index at 1873 K (1600 °C). The developed phosphate capacity prediction model can be also used to predict the phosphate capacity index with reliable accuracy compared with the measured and the predicted phosphate capacity index of the slags by other models in literatures. The results from the IMCT phosphate capacity prediction model show that the comprehensive effects of iron oxides and basic components control the dephosphorization reaction with an optimal ratio of (pct FeO)/(pct Fe2O3) as 0.62. The determined contribution ratio of FetO, CaO + FetO, MgO + FetO, and MnO + FetO to the phosphate capacity or phosphate capacity index of the slags is approximately 0.0 pct, 99.996 pct, 0.0 pct, and 0.0 pct, respectively. The generated 2CaO·P2O5, 3CaO·P2O5, and 4CaO·P2O5 as products of dephosphorization reactions accounts for 0.016 pct, 96.01 pct, and 3.97 pct of the phosphate capacity or phosphate capacity index of the slags, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.