Abstract

A general thermodynamic model for calculating the energy of stacking faults is presented and applied to f.c.c. Fe–Cr–Ni alloys. A distinction is made between ideal stacking faults and real stacking faults which are associated with an ideal stacking-fault energy (SFE) and an effective SFE, respectively. The ideal SFE is characterized by a chemical energy volume term and an interphase surface energy term, whereas the effective SFE is defined by an additional strain energy volume term. The chemical and strain energy terms are evaluated from theoretical considerations. The interphase surface energy is calculated based on a comparison with experimental values obtained from Transmission Electron Microscopy (TEM) measurements. The results of this analysis show a good agreement between the calculated and experimental values. The model enables the determination of the ideal and effective stacking fault energies as a function of the Cr and Ni contents. The SFE dependence on the Cr vs Ni contents has the shape of a hyperbola.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.