Abstract

We present a model describing how Mg(2+) binds and stabilizes specific RNA structures. In this model, RNA stabilization arises from two energetically distinct modes of Mg(2+) binding: diffuse- and site-binding. Diffusely bound Mg(2+) are electrostatically attracted to the strong anionic field around the RNA and are accurately described by the Poisson-Boltzmann equation as an ensemble distributed according to the electrostatic potentials around the nucleic acid. Site-bound Mg(2+) are strongly attracted to specifically arranged electronegative ligands that desolvate the ion and the RNA binding site. Thus, site-binding is a competition between the strong coulombic attraction and the large cost of desolvating the ion and its binding pocket. By using this framework, we analyze three systems where a single site-bound Mg(2+) may be important for stability: the P5 helix and the P5b stem loop from the P4-P6 domain of the Tetrahymena thermophila group I intron and a 58-nt fragment of the Escherichia coli 23S ribosomal RNA. Diffusely bound Mg(2+) play a dominant role in stabilizing these RNA structures. These ions stabilize the folded structures, in part, by accumulating in regions of high negative electrostatic potential. These regions of Mg(2+) localization correspond to ions that are observed in the x-ray crystallographic and NMR structures of the RNA. In contrast, the contribution of site-binding to RNA stability is often quite small because of the large desolvation penalty. However, in special cases, site-binding of partially dehydrated Mg(2+) to locations with extraordinarily high electrostatic potential can also help stabilize folded RNA structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.