Abstract

Abstract. By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.