Abstract
A thermodynamic stability study of five histidine-containing phosphocarrier protein (HPr) homologues derived from organisms inhabiting diverse environments is described. These HPr homologues are from Bacillus subtilis (Bs), Streptococcus thermophilus (St), Bacillus staerothermophilus (Bst), Bacillus halodurans (Bh), and Oceanobacillus iheyensis (Oi). Analyses of solvent and thermal denaturation experiments provide the cardinal thermodynamic parameters, like deltaG, deltaH, deltaS, T(m), and deltaC(p), that characterize the conformational stability for each homologue. The homologue from Bacillus staerothermophilus (BstHPr) was established as the most thermostable homologue and also the homologue with highest deltaG at all temperatures. A good correlation between habitat temperature of the organism and thermal stability of the protein is also seen. Stability curves (deltaG vs T) for every homologue are also reported; these reveal very similar deltaC(p) and temperature of maximum stability (T(S)) values for all HPr homologues. Stability curves show that the higher thermal stability of some homologues is not a result of change in curvature of the curve or a shift to higher temperature, but rather a displacement of the stability curves to higher deltaG values. Stability curves also allowed estimation of deltaG at habitat temperature of the organisms, and we find good agreement between homologues. Electrostatic contributions to stability of each homologue were investigated by measuring stability as a function of varying pH and NaCl concentration, and our results suggest that most HPr homologues share similar electrostatic contributions to stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.