Abstract

In recent years, the design of non-viral artificial gene delivery systems has been an important trend in the field of gene therapy. Such systems include the use of copolymer−DNA complexes due to the ionic interactions among the participating species. The resulting complexes are stable in aqueous dispersion, despite complete charge neutralization. To optimize the biological activity of these complexes, it is important to have a complete knowledge of their physicochemical properties. In this work, we report on the interaction of a cationic graft copolymer, poly(ethylene oxide)-g-polyethylenimine (PEO-g-PEI) with poly[d(AT)]·poly[d(AT)] (DNA). A combination of gel electrophoresis, optical, and calorimetric techniques is used to obtain a complete thermodynamic description for both the unfolding of the free and polycation bound DNA, and the interaction of the polycation with DNA. The copolymer−DNA complexes are produced spontaneously resulting from the formation of ion pairs between ionized amino groups of PEI...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.