Abstract

The rapid accumulation of omics data from biological specimens has revolutionized the field of cancer research. The generation of computational techniques attempting to study these masses of data and extract the significant signals is at the forefront.We suggest studying cancer from a thermodynamic-based point of view. We hypothesize that by modelling biological systems based on physico-chemical laws, highly complex systems can be reduced to a few parameters, and their behavior under varying conditions, including response to therapy, can be predicted.Here we validate the predictive power of our thermodynamic-based approach, by uncovering the protein network structure that emerges in MCF10a human mammary cells upon exposure to epidermal growth factor (EGF), and anticipating the consequences of treating the cells with the Src family kinase inhibitor, dasatinib.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.