Abstract

We propose a method to relate the holographic minimal information density to de Broglie’s wavelength at a given universe temperature T. To figure this out, we assume that the thermal length of massive and massless constituents represents the cut-off scale of the holographic principle. To perform our analysis, we suppose two plausible universe volumes, that is, the adiabatic and the horizon volumes, that is, V∝a3 and V∝H-3, respectively, assuming zero spatial curvature. With these choices in mind, we evaluate the thermal lengths for massive and massless particles and we thus find two cosmological models associated with late and early cosmological epochs. We demonstrate that both models depend upon a free term β which enters the temperature parametrization in terms of the redshift z. For the two treatments, we show evolving dark energy terms which can be compared with the ωCDM quintessence paradigm when the barotropic factor takes the formal values ω0=-1/3(2+β) and ω0=-1/3(1+2β), respectively, for late and early eras. From our analyses, we nominate the two models as viable alternatives to dark energy determined from thermodynamics in the field of the holographic principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.