Abstract
We present a thermodynamic and cost analysis of synthesis gas (syngas) production by the Zn/ZnO solar thermochemical fuel production cycle. A mass, energy, and entropy balance over each step of the Zn/ZnO syngas production cycle is presented. The production of CO and H2 is considered simultaneously across the range of possible stoichiometric combinations, and the effects of irreversibilities due to both recombination in the quenching process following dissociation of ZnO and incomplete conversion in the fuel production step are explored. In the cost analysis, continuous functions for each cost component are presented, allowing estimated costs of syngas fuel produced at plants between 50 and 500 MWth. For a solar concentration ratio of 10,000, a dissociation temperature of 2300 K, and a CO fraction in the syngas of 1/3, the maximum cycle efficiency is 39% for an ideal case in which there is no recombination in the quencher, complete conversion in the oxidizer, and maximum heat recovery. In a 100 MWth plant, the cost to produce syngas would be $0.025/MJ for this ideal case. The effect of heat recuperation, recombination in the quencher, and incomplete conversion on efficiency and cost are explored. The effects of plant size and feedstock costs on the cost of solar syngas are also explored. The results underscore the importance improving quencher and oxidizer processes to reduce costs. However, even assuming the ideal case, the predicted cost of solar syngas is 5.5 times more expensive than natural gas on an energy basis. The process will therefore require incentive policies that support early implementation in order to become economically competitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.