Abstract

Plasma Gasification Melting is a promising technology for solid waste treatment. In this work, a thermodynamic analysis has been conducted to evaluate the advantages and limitations of the PGM technology. According to the characteristics of the PGM, the whole process was divided into four sections such as drying, pyrolysis, char gasification and inorganics melting. The energy and exergy in each section has been calculated. According to different usage of syngas, two kinds of energy and exergy efficiencies are defined. The results show that the PGM process produces a tar-rich syngas. When considering the raw syngas (syngas with tar), the energy and exergy efficiency of PGM process is very high. The effects of operating conditions on the thermodynamic performance of the PGM process have been analyzed. Considering the energy and exergy of clean syngas, it is beneficial to increase sensible heat input to the PGM system. However, high sensible heat input or high steam injection is not suggested when considering the energy and exergy efficiency of raw syngas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.