Abstract

A thermodynamic analysis of synthesis gas production via partial oxidation (POX) of biogas is performed in the present article. Chemical equilibrium calculations are conducted for partial oxidation of (CH4+CO2) mixtures based on Gibbs free energy minimization method emphasizing soot formation. Regarding precise evaluation of carbon dioxide effects on the reforming characteristics, the obtained results are compared with the experimental data. Furthermore, the effects of steam injection at the inlet of the reformer on the coking behavior and syngas production yield are studied. To investigate the effects of the equivalence ratio (ϕ), temperature and pressure, a broad parametric study is performed. The results reveal that the process temperature plays a pivotal role in enhancing the syngas production and soot abatement. It is also found that the pressure has an impractical effect on the syngas production yield, leading to the soot formation and decrease in both hydrogen and carbon monoxide yields. Furthermore, increasing the inlet CO2/CH4 makes the thermal reforming efficiency to rise at an equivalence ratio lower than 3. Meanwhile, increasing the steam to methane (S/C) ratio reduces carbon formation and enhances hydrogen production. Nonetheless, when the S/C ratio is larger than 2 at ϕ = 2.5 and 1 at ϕ = 3, the enhancement of hydrogen generation is minimized and even tends to become impractical. Therefore, near adiabatic and atmospheric condition at ϕ = 2.5–3 with S/C < 1 are recommended as the optimum operating routes for partial oxidation of biogas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call