Abstract

A gene encoding an intracellular glucoamylase was identified in the genome of the extreme thermoacidophilic Archaeon Thermoplasma acidophilum. The gene taGA, consisting of 1,911 bp, was cloned and successfully expressed in Escherichia coli. The recombinant protein was purified 22-fold to homogeneity using heat treatment, anion-exchange chromatography, and gel filtration. Detailed analysis shows that the glucoamylase, with a molecular weight of 66 kDa per subunit, is a homodimer in its active state. Amylolytic activity was measured over a wide range of temperature (40-90 degrees C) and pH (pH 3.5-7) and was maximal at 75 degrees C and at acidic condition (pH 5). The recombinant archaeal glucoamylase uses a variety of polysaccharides as substrate, including glycogen and amylose. Maximal activity was measured towards amylopectin with a specific activity of 4.2 U/mg and increased almost threefold in the presence of manganese. Calcium ions have a pronounced effect on enzyme stability; in the presence of 5 mM CaCl(2), the half-life increased from 15 min to 2 h at 80 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.