Abstract

The operating principle and design of an uncooled noise-immune high-power microwave pulse sensor is described. The sensor operation is based on the effect of acoustic signal generation when microwave pulses are absorbed in a layer structure, in which a thin metal nanometer-thick film is used as an absorber. The sensor is placed in a free space and intended to detect microwave pulses with ∼10- to 100-ns durations in a 10- to 300-GHz frequency band with a pulse repetition rate of up to 5 kHz. For 10-ns-long pulses, the sensor sensitivity is 0.5 V/mJ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.