Abstract

Failure of cement sheath due to casing expansion or formations pressure during completion or production stages of HPHT or deep vertical wells is a very common phenomenon. There have been many studies providing approaches to predict cement sheath failure, where theory of elasticity or thermo-elasticity together with the plane strain concept were taken into consideration to obtain representative results. However, sedimentary formations in subsurface layers are exhibiting a poroelastic behavior and theory of elasticity may not be able to fully describe their behaviors when changes in pore pressure and in-situ stresses are taking place. In this paper, an analytical approach based on the theory of thermo-poroelasticity was presented to predict the possibility of cement sheath failure in deep structures. A separate numerical molding was also performed to evaluate the application of the approach developed. The results obtained indicated that a thicker cement can withstand a higher load applied by the formations and protect the casing against a significant collapse pressure. The temperature was also found as a significant contributor in increasing the pressure applied by the formation and casing on the cement due to pore fluid and steel expansions. Although some discrepancies observed between the results of the numerical simulation and the analytical model, it seems that the approach presented is able to provide reliable results considering the fact that interactions of material interfaces could not be included in the analytical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.