Abstract

The stability analysis of horizontal wells is essential for a successful underground coal gasification (UCG) operation. In this paper, a new 3D coupled thermo-mechanical numerical modeling is proposed for analyzing the stability of UCG horizontal wells. In this model, the effect of front abutment stresses, syngas pressure, syngas temperature and thermal stresses is considered to predict the mud weight window and drilling mud pressure during UCG process. The results show that the roof caving in UCG panel has a greatest impact on the stability of horizontal well. Moreover, when the time of coal gasification is increased, the well convergence increases and for more stability it is necessary to increase the drilling mud pressure. This research was carried out on the M2 coal seam in Mazino coal deposit (Iran). The results showed that the mud weight window for horizontal well drilling is between 0 and 33 MPa. The appropriate stress for the maximum stability of the horizontal well, taking all the thermal and mechanical parameters into account, is 28 MPa. The suggested numerical method is a comprehensive and consistent way for analyzing the stability of horizontal wells in UCG sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.