Abstract

A building envelope serves as a thermal barrier and plays an important role in determining the amount of energy used to achieve a comfortable indoor environment. Conventionally, it is constructed and treated as a passive component in a building thermal energy system. In this article, a novel, mini-tube capillary-network embedded and thermal-water activated building envelope is proposed to turn the passive component into active, therefore broaden the direct utilization of low-grade thermal energy in buildings. With this proposed approach, low-grade thermal water at a medium temperature close to the ambient environment can be potentially utilized to either counterbalance the thermal load or indirectly heat and cool the space. With the revealing of the idea, effects of water temperature and flow rate on the envelope's thermal performance are investigated using a transient model. The results indicate that the thermo-activated wall can be effective in stabilizing the internal surface temperature, offsetting the heat gain, and supplying cooling energy to the space in summer. Utilization of the innovation should take the cost of total energy, energy benefit and efficiency into consideration. This article illustrates how low-grade energy can be actively used as a means for achieving net-zero energy buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.