Abstract

We present a three-dimensional (3D) perfect metamaterial absorber (PMA) for temperature sensing application in terahertz region. The PMA consists of a 3D metal resonator structure array and a continuous metal film separated by an indium antimonide (InSb) layer. The numerical simulations demonstrate that the PMA can achieve perfect absorption (about 99.9%) with the high [Formula: see text]-factor of about 18.8 at 2.323 THz when the temperature is 300 K (room temperature). Further simulation results indicate that this terahertz PMA is polarization-insensitive and wide-angle for both transverse electric (TE) and transverse magnetic (TM) waves. The electric field and surface current distributions of the unit-cell structure indicate that the perfect absorption is originated from the excitation of the fundamental magnetic and electric dipole resonance mode. Since the permittivity of the InSb is sensitive to the external temperature, the resonance absorption frequency of the PMA can be dynamically adjusted. The temperature sensitivity of the PMA is about 15.24 GHz/K, which may have potential prospects in temperature sensing and detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.