Abstract

We have synthesized and characterized a novel thermally polymerizable triaryldiamine monomer (VB-FNPD) possessing a styrene-functionalized 9,9-diarylfluorene core and have used time-of-flight transient photocurrent techniques to investigate the hole transport properties of its solution-processed and subsequently thermally cured (170 °C) polymer films. This novel polymeric material exhibits non-dispersive hole transport behavior with a high hole drift mobility (up to 10−4 cm2V−1 s−1). The film displayed remarkable ambient stability, even when exposed to air for one month. We tested the thermally generated polymer film as a hole transport material in organic light-emitting diodes incorporating tris(8-hydroxyquinolate) aluminium (Alq3) as the emission and electron transport layer. The device exhibited a maximum external quantum efficiency (ηex) of 1.4%, significantly better than that of the device prepared using the corresponding model compound VB-model (ηex = 1.1%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.