Abstract

We demonstrate a synaptic transistor that uses a thermally crosslinked three-dimensional network to accommodate ionic liquid to form an ion gel layer. The synaptic transistor successfully emulated important synaptic plasticity, such as paired-pulse facilitation, spike-number dependent plasticity, spike-voltage dependent plasticity, and spike-rate dependent plasticity; these responses imply successful use of the ion gel. Moreover, the device realized “OR” and “AND” logic operations, and high-pass filtering behavior. Energy consumption of the device can be reduced to sub-femtojoule level, which is below that of biological synapses. Compared with traditional physical cross-linking using block copolymers, this method provides a facile strategy to prepare ion gels with tunable properties by altering the polymers and crosslinkers, and to enormously reduce the price by replacing expensive block copolymers or eliminating additional synthesis processes. This report provides a versatile strategy for design of synaptic transistors and their applications in neuromorphic electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.