Abstract
The development of a thermally activated delayed fluorescence (TADF) exciplex with high energy is of great significance in achieving highly efficient blue, green, and red organic light-emitting diodes (OLEDs) for use in full-color displays and white lighting. Highly efficient and stable blue and green phosphorescent OLEDs were demonstrated by employing a TADF exciplex (energy: 2.9 eV) based on 4-substituted aza-9,9′-spirobifluorenes (aza-SBFs). Blue PhOLEDs demonstrated a maximum current efficiency (CE) of 47.9 cd A−1 and an external quantum efficiency (EQE) of 22.5% at 1300 cd m−2 (2.5 times the values of aza-SBF-based systems), with the best blue PhOLED demonstrating a CE, power efficiency (PE) and EQE of 60.3 cd A−1, 52.7 lm W−1, and 26.2%, respectively. Green PhOLEDs exhibited a CE of 78.1 cd A−1 and EQE of 22.5% at 9360 cd m−2, with the best green PhOLED exhibiting a maximum CE, PE, and EQE of 87.4 cd A−1, 101.6 lm W−1, and 24.5%, respectively. The device operational lifetime was improved over 17-fold compared to reference devices because of the high thermal stability of the materials and full utilization of the TADF exciplex energy, indicating their potential for application in commercial OLEDs.
Highlights
Since 1987, organic light-emitting diodes (OLEDs) have attracted intense interest because of their excellent applications in at-panel displays and solid-state lighting.[1]
The development of a thermally activated delayed fluorescence (TADF) exciplex with high energy is of great significance in achieving highly efficient blue, green, and red organic light-emitting diodes (OLEDs) for use in full-color displays and white lighting
Efficient and stable blue and green phosphorescent OLEDs were demonstrated by employing a TADF exciplex based on 4-substituted aza-9,90spirobifluorenes
Summary
Since 1987, organic light-emitting diodes (OLEDs) have attracted intense interest because of their excellent applications in at-panel displays and solid-state lighting.[1]. Efficient and stable blue and green phosphorescent OLEDs were demonstrated by employing a TADF exciplex (energy: 2.9 eV) based on 4-substituted aza-9,90spirobifluorenes (aza-SBFs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.