Abstract
By analysing the variations of saturation velocity and Michaelis constant with temperature and invoking the mathematical constraint represented by the Arrhenius equation, it becomes possible to estimate k+2 and indistinguishably k+1 and k-1 for the Michaelis--Menten mechanism of one-substrate enzyme reactions. Distinction between k+1 and k-1 may be obtained through the determination of isotopic rate effects. This procedure thus provides a basis for evaluating all three rate constants of the one-substrate mechanism, and disproves the suggestion that k+1 and k-1 are intrinsically unobtainable from steady-state kinetic measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.