Abstract

Excessive heat generation within a body can cause unbounded temperature or thermal instability. In this work, a new stability test is established for heat conduction in one-dimensional multilayer composite solids that have internal heat generation at a rate proportional to the interior temperature. In the development, a spatial state formulation in the Laplace transform domain and a root locus analysis yield a stability criterion. This criterion gives an upper bound of heat source for thermal stability and relates the degree of excessive heat production to the number of unstable (positive) eigenvalues. The proposed stability test does not need any information on system eigenvalues, requests minimum computational effort, and is applicable to composites with thermal resistance at layer interfaces and bodies with nonuniformly distributed parameters. The convenience and efficiency of the stability test are demonstrated in three numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.