Abstract
A new approach for the calculation of anharmonic molecular vibrational partition functions is developed based on a separable ansatz to the thermal density matrix. The parameters appearing in the effective single particle Hamiltonians that generate the thermal density matrices are determined variationally. The resulting equations are the thermal analogs of the vibrational self-consistent field approximation. The method has the formal property that the free energy calculated by this approach is an upper bound to the exact free energy. Thermodynamic quantities calculated by this approach are generally in good agreement with the results of numerically converged calculations. This approach is more efficient than the standard sum over state approaches in that the computational resources scale with N(4) where N is the number of vibrational degrees of freedom. Thus it can be applied to fairly large systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.