Abstract
Accurate measurement of the neutron flux is of crucial importance for rare event search experiments in underground laboratories. The intrinsic radioactive background of the detector becomes the limiting factor for the detection of extremely low neutron flux. In this study, a thermal neutron detection system aimed at low flux measurement was developed based on boron-coated straw (BCS) neutron detectors. The neutron events can be distinguished from the detector background by coincidence measurement of neutron and the prompt gamma ray. With state-of-the-art BCS neutron detectors and NaI(Tl) gamma detector, a system sensitivity of ∼120 cps/nv was achieved, comparable to that of the commonly used 3He counters. Based on the selected coincidence criteria, the background events were rejected to 0.1% with 45.3% of the neutrons preserved. The background accidental coincidence count rate of the system was measured as 2.3×10-5 cps, corresponding to a lower limit of measurable thermal neutron flux of 1.9×10-7 n/cm2/s. The performance of the system can be further improved by using other gamma scintillator with lower neutron absorption (such as BGO) and adding extra shielding for ambient gamma rays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Instrumentation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.