Abstract

A thermal model of friction stir welding was developed that utilizes a new slip factor based on the energy per unit length of weld. The slip factor is derived from an empirical, linear relationship observed between the ratio of the maximum welding temperature to the solidus temperature and the welding energy. The thermal model successfully predicts the maximum welding temperature over a wide range of energy levels but under predicts the temperature for low energy levels for which heat from plastic deformation dominates. The thermal model supports the hypothesis that the relationship between the temperature ratio and energy level is characteristic of aluminum alloys that share similar thermal diffusivities. The thermal model can be used to generate characteristic temperature curves from which the maximum welding temperature in an alloy may be estimated if the thermal diffusivity, welding parameters and tool geometry are known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.