Abstract

Due to its low operating temperature, the performance of a methanol steam reformer depends on efficient thermal integration. In particular, the integration of the evaporator is crucial to enhance thermal efficiency. This paper presents two different configurations to utilize thermal energy for evaporation of methanol/water mixture. The reformer system is composed of a methanol steam reformer, a burner, and two different evaporators such as internal evaporator and external evaporator. Moreover, since the performance of the reforming system strongly depends on thermal utilization, a heat recovery module is designed for methanol reforming system with internal evaporator. The heat duty and steam to carbon ratio (S/C) are the variables for evaluation of its suitability. The experimental results indicate that the internal evaporator with the auxiliary heat recovery module provides stable conditions over wide operating ranges.

Highlights

  • As the use of conventional fossil fuels has triggered many environmental issues, alternative energy sources have been introduced to meet increasingly stringent related regulations

  • Even though the methanol conversation rate is increased with heat duty, the results show that hydrogen yields is improved but the carbon monoxide concentration is sensitive to the heat duty conditions

  • A thermal management strategy of a methanol steam reforming system is investigated with two different configurations

Read more

Summary

Introduction

As the use of conventional fossil fuels has triggered many environmental issues, alternative energy sources have been introduced to meet increasingly stringent related regulations. The hydrogen is an alternative energy source which has high efficiency and low emissions. Since the hydrogen is not a natural resource, it should be produced by various processes [1,2,3,4]. The methanol is a resource to produce hydrogen via a chemical reforming process. Since the methanol has high hydrogen yields with competitive energy density at a relatively low operating temperature, characteristics of methanol reforming process have been widely reported. Kinetics studies shows that the entire process entails an original methanol decomposition followed by a water gas shift reaction and, the steam reforming reaction [5,6,7]. Most studies on methanol steam reforming reported kinetics of various catalysts such as Cu/ZnO and CuO/ZnO/Al2 O3 [8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call