Abstract

Uncontrolled hemorrhage stands as the primary cause of potentially preventable deaths following traumatic injuries in both civilian and military populations. Addressing this critical medical need requires the development of a hemostatic material with rapid hemostatic performance and biosafety. This work describes the engineering of a chitosan-based cryogel construct using thermo-assisted cross-linking with α-ketoglutaric acid after freeze-drying. The resulting cryogel exhibited a highly interconnected macro-porous structure with low thermal conductivity, exceptional mechanical properties, and great fluid absorption capacity. Notably, assessments using rabbit whole blood in vitro, as well as rat liver volume defect and femoral artery injury models simulating severe bleeding, showed the remarkable hemostatic performance of the chitosan cryogel. Among the cryogel variants with different chitosan molecular weights, the 150 kDa one demonstrated superior hemostatic efficacy, reducing blood loss and hemostasis time by approximately 73 % and 63 % in the hepatic model, and by around 60 % and 68 %, in the femoral artery model. Additionally, comprehensive in vitro and in vivo evaluations underscored the good biocompatibility of the chitosan cryogel. Taken together, these results strongly indicate that the designed chitosan cryogel configuration holds significant potential as a safe and rapid hemostatic material for managing severe hemorrhage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.