Abstract
Hydroxyethyl cellulose (HEC) with low molar substitution has better solubility in 8%NaOH-water solution than pure cellulose. The thermal behavior of ternary HEC/NaOH/water mixtures was investigated by DSC, and the results are compared with those of cellulose/NaOH/water solutions, aiming at providing better understanding about cellulose dissolution mechanism in NaOH-water. At low polymer concentrations and below 0°C, HEC and cellulose solutions exhibit a similar thermal behavior with ice, eutectic and/or melting and recrystallization peaks, showing that the overall interactions between NaOH, water and cellulose or HEC are identical. However, when the concentration increases above 2%, the eutectic peak of HEC solutions disappeared, leaving only the ice peak, which is different from previous results for cellulose where the disappearance of the eutectic peak was related to the maximum solubility of cellulose (around 8 wt%). This implies that the dissolution behavior of HEC in NaOH solution is changed due to possible changes of chain flexibility and/or increased attractions to water caused by the hydrophilic hydroxyethyl groups. The melting and recrystallization peaks visible only at low concentrations of HEC or cellulose in solution also support the conclusion that dissolution of cellulose and HEC at low concentrations bears features which are not yet understood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.