Abstract

A detailed study of the gas-dynamic behaviour of both liquid and gas flows is urgently required for a variety of technical and process design applications. This article provides an overview of the application and an improvement to thermal anemometry methods and tools. The principle and advantages of a hot-wire anemometer operating according to the constant-temperature method are described. An original electronic circuit for a constant-temperature hot-wire anemometer with a filament protection unit is proposed for measuring the instantaneous velocity values of both stationary and pulsating gas flows in pipelines. The filament protection unit increases the measuring system's reliability. The designs of the hot-wire anemometer and filament sensor are described. Based on development tests, the correct functioning of the measuring system was confirmed, and the main technical specifications (the time constant and calibration curve) were determined. A measuring system for determining instantaneous gas flow velocity values with a time constant from 0.5 to 3.0 ms and a relative uncertainty of 5.1% is proposed. Based on pilot studies of stationary and pulsating gas flows in different gas-dynamic systems (a straight pipeline, a curved channel, a system with a poppet valve or a damper, and the external influence on the flow), the applications of the hot-wire anemometer and sensor are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call