Abstract
The thermal response of rotating drums under an electron beam has been analyzed using a finite difference thermal analysis computer code. Rotating drums are used to convey thin webs or films under the electron beams while controlling their temperature and, in some cases, in dissipating the exotherm involved in curing coatings applied to them. Each portion of the drum surface receives one heat pulse per rotation as it passes under the beam. The drum's thermal behavior shows both an immediate response to each heat pulse and a more gradual response to the average heat acquired over many pulses. After many rotations a steady state is reached where there is only an immediate response to each heat pulse but the gradual heating has tapered off. Nevertheless the steady state temperatures are strongly dependent on the gradual heating that led to them. Slow and fast speeds of rotation are compared showing the effects of both gradual and immediate heating components. The thermal analysis is extended to include the coolant fluid inside the drum shell and the web on the drum surface. The coolant's incoming temperature, volumetric flow rate, flow speed through the coolant channels and film coefficient between the outer shell and fluid are all included in the analysis. The small air gap between the web and drum, the convective cooling of the web to the ambient air, and the exothermic reaction of any chemical reactions on the web are included. The stresses produced in the drum shell (i.e. between the outer surface and the temperature-controlling fluid within the drum) are analyzed in order to define safe e-beam powers and rotating speeds. The analysis provides the basis for many design decisions and can give an end-user a full temperature history for his product for any set of conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Applications & Instrumentation. Part C, Radiation Physics & Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.