Abstract
We previously demonstrated that focal adhesion kinase (FAK), p130Cas and paxillin are crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Therefore, molecules existing in the GD3-mediated signaling pathway could be considered as suitable targets for therapeutic intervention in malignant melanoma. The aim of this study was to determine whether blockade of p130Cas and/or paxillin by RNAi suppresses melanoma growth. We found a suitable dose (40μM siRNA, 25μl/tumor) of the siRNA to suppress p130Cas in the xenografts generated in nu/nu mice. Based on these results, we performed intratumoral (i.t.) treatment with anti-p130Cas and/or anti-paxillin siRNAs mixed with atelocollagen as a drug delivery system in a xenograft tumor of a human melanoma cell line, SK-MEL-28. Mixture of atelocollagen (1.75%) and an siRNA (500 or 1000pmol/tumor) was injected into the tumors every 3days after the first injection. An siRNA against human p130Cas markedly suppressed tumor growth of the xenograft in a dose-dependent manner, whereas siRNA against human paxillin slightly inhibited the tumor growth. A control siRNA against firefly luciferase showed no effect. To our surprise, siRNA against human p130Cas (500 or 1000pmol/tumor) combined with siRNA against human paxillin dramatically suppressed tumor growth. In agreement with the tumor suppression effects of the anti-p130Cas siRNA, reduction in Ki-67 positive cell number as well as in p130Cas expression was demonstrated by immunohistostaining. These results suggested that blockade of GD3-mediated growth signaling pathways by siRNAs might be a novel and promising therapeutic strategy against malignant melanomas, provided signaling molecules such as p130Cas and paxillin are significantly expressed in individual cases. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.