Abstract

Choroidal neovascularization (CNV) is a common cause of severe and irreversible visual loss; however, the treatment of CNV has been hindered by its complex and poorly understood pathogenesis. It has been postulated that bone marrow (BM)-derived cells (BMCs) contribute to CNV, but little is known about the role of mesenchymal stem cells (MSCs) in CNV and their therapeutic potential for CNV treatment. We found that BM-derived MSCs transplanted by intravenous injection into laser-induced CNV mouse models were specifically recruited into CNV lesions, where they differentiated into multiple cell types and participated in the development of neovascularization, without stagnation in other organs. By taking advantage of this recruitment potential, engineered MSCs were used to produce the antiangiogenic pigment epithelial-derived factor (PEDF) at the CNV sites, thereby inhibiting the growth of CNVs and stimulating regressive features. Further studies indicated that the effect may be mediated, at least partly, by retinal pigment epithelial (RPE) cells, which function as important regulators for CNV development. These results suggest that MSCs contribute to CNV and could serve as delivery vehicles of antiangiogenic agents for the treatment of a range of CNV-associated diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.