Abstract

A multifunctional nanocomposite theranostic system is constructed of manganese oxide (Mn3O4) nanoparticles (NPs), as a tumor diagnostic agent, in conjunction with polyacrylic acid (PAA), as a pH-sensitive drug delivery agent, and methotrexate (MTX), as a model of targeting agent and anticancer drug. Physicochemical characteristics of the Mn3O4@PAA/MTX system is studied in detail by several techniques, including X-ray and Auger photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The system performance is studied based on (i) in-vitro MRI measurements to support efficiency of the Mn3O4@PAA NPs as a diagnostic agent, (ii) drug release performance of the Mn3O4@PAA/MTX NPs at pHs of 5.4 and 7.4 through in-vitro method to evaluate application of the NPs as pH-sensitive nanocarriers for MTX, and (iii) impedance spectroscopy measurements to show Mn3O4@PAA/MTX NPs affinity for capturing of cancer cells. The results show that (i) Mn3O4@PAA NPs can be used as a contrast agent in MRI measurements (r1 ≅ 6.5 mM−1 s−1), (ii) the MTX, loaded on Mn3O4@PAA NPs, is released faster and more efficient at pH 5.4 than 7.4, and (iii) the GC-Mn3O4@PAA/MTX electrode system captures the 4T1 cells 3.32 times larger than L929 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.