Abstract
For the past 60 years, the framework for understanding the kinetic behavior of proton transfer has been transition state theory. Found throughout textbooks, this theory, along with the Bell tunneling correction, serves as the standard model for the analysis of proton/hydrogen atom/hydride transfer. In comparison, a different theoretical model has recently emerged, one which proposes that the transition state occurs within the solvent coordinate, not the proton transfer coordinate, and proton transfer proceeds either adiabatically or nonadiabatically toward product formation. This Account discusses the central tenets of the new theoretical model of proton transfer, contrasts these with the standard transition state model, and presents a discrepancy that has arisen between our experimental studies on a nonadiabatic system and the current understanding of proton transfer. Transition state theory posits that in the proton transfer coordinate, the proton must surmount an electronic barrier prior to the formation of the product. This process is thermally activated, and the energy of activation is associated with the degree of bond making and bond breaking in the transition state. In the new model, the reaction path involves the initial fluctuation of the solvent, serving to bring the reactant state and the product state into resonance, at which time the proton is transferred either adiabatically or nonadiabatically to form the product. If this theory is correct, then all of the deductions derived from the standard model regarding the nature of the proton transfer process are called into question. For weakly hydrogen-bonded complexes, two sets of experiments are presented supporting the proposal that proton transfer occurs as a nonadiabatic process. In these studies, the correlation of rate constants to driving force reveals both a normal region and an inverted region for proton transfer. Yet, the experimentally observed kinetic behavior does not align with the recent theoretical formulation for nonadiabatic proton transfer, underscoring the gap in the collective understanding of proton transfer phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.