Abstract

Abstract A theoretical model is developed which Permits prediction of velocity profiles and frictional prediction of velocity profiles and frictional resistance factors for the isothermal flow of Bingham plastic non-Newtonian slurries in laminar, transitional, and turbulent flow between that parallel walls, in rectangular ducts of large width-to-height ratios, or in concentric annuli with radius ratios approaching unity. The theory is tested with available frictional resistance data for a range of Hedstrom numbers from 10(4) to 10(8) and a set of theoretical design curves of friction factor vs Reynolds number is developed. The model indices that for certain ranges of Hedstrom number (the non-Newtonian index) turbulence is suppressed relative to Newtonian flow behavior, whereas for other ranges of Hedstrom number, the converse is true. Introduction The handling of non-Newtonian fluids in turbulent motion is an important operation in many modern technological processes. Despite this fact, however, little has been done to develop models which are comparable to those available for Newtonian turbulent flow. In particular, a model of the transitional flow regime is notably lacking. Recently, a theory of laminar-turbulent transition for non-Newtonian slurries flowing in pipes and parallel plates was presented. A theory of parallel plates was presented. A theory of transitional and turbulent flow of Newtonian fluids in pipes and parallel plate ducts has also recently been developed. This theory permits the analytic calculation of the friction factor-Reynolds number curves as a continuous function of Reynolds number from the critical Reynolds number of laminar turbulent transition to any condition of turbulent flow. In this paper these two theories will be combined in order to develop a theory for the transitional and turbulent flow of non-Newtonian slurries in parallel plate ducts, rectangular ducts of large width-to-height ratio, or concentric annuli with radius ratios approaching unity. THEORETICAL ANALYSIS The rheological model which will be used to represent the non-Newtonian slurry behavior is the linear Bingham plastic model, ..............(1) ............(2) For this model the laminar flow curve is given by ..............(3) where q = 2v/b, b is one-half the distance between the plates, w = b(−dp/dz) is the wall shear stress, and D = o/ w. The end of the laminax flow, region is determined by the equations ........(4) .........(5) where N Rec = 4bp vc/ p is the critical Reynolds number, Dc is the critical transitional value of D and N He -16bp o/ p is the Hedstrom number expressed in terms of the hydraulic diameter for parallel plates. parallel plates. The calculation of the transitional flow field for this type of fluid will be based upon the model developed by Hanks for Newtonian fluids. SPEJ P. 52

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call