Abstract
This paper argues that the theory of structured propositions is not undermined by the Russell-Myhill paradox. I develop a theory of structured propositions in which the Russell-Myhill paradox doesn’t arise: the theory does not involve ramification or compromises to the underlying logic, but rather rejects common assumptions, encoded in the notation of the λ-calculus, about what properties and relations can be built. I argue that the structuralist had independent reasons to reject these underlying assumptions. The theory is given both a diagrammatic representation and a logical representation in a novel language. In the latter half of the paper I turn to some technical questions concerning the treatment of quantification and demonstrate various equivalences between the diagrammatic and logical representations and a fragment of the λ-calculus.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.