Abstract

To reverse engineer a system is to infer how its underlying mechanism works. This paper presents a theory of the process, which postulates that individuals rely on an initial strategy of either focusing on the outputs of a system one by one, or on the components of the system one by one. They then try to assemble the system guided by both local and global constraints. The theory predicts that three main factors should affect the difficulty of reverse engineering: the number of variable components in the system, the number of their settings that yield an output, and, most importantly, the interdependence of components on one another in yielding outputs. Five experiments corroborated these predictions, using a test bed of electric light circuits and water-flow systems based on Boolean logic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call